6,167 research outputs found

    A transient digitiser for fast air shower events

    Get PDF
    Air shower structure are often measured on time scales of a few nanoseconds. Longitudinal disk structure near the core is of the order of meters in dimension, air Cerenkov pulses have full widths at half maximum of the order of tens of nanoseconds, and fast timing over typical arrays is usually measured to nanosecond accuracy. oscilloscopes can be used but have very limited dynamic range and are expensive if measurements down to a few nanoseconds are to be made. For the fast Cerenkov work, an instrument with better dynamic range than an oscilloscope and with a time resolution sufficient to allow measurements limited only by system risetime of a few nanoseconds is needed. A 16/32 channel, 8 bit, fast transient digitizer was designed and built which runs at sample intervals down to approx. 1 nanosecond per channel

    Discharge characteristics of dielectric materials examined in mono-, dual-, and spectral energy electron charging environments

    Get PDF
    The effects of midenergy electrons on the charge and discharge characteristics of spacecraft dielectric materials and the data base from which basic discharge models can be formulated is expanded. Thin dielectric materials were exposed to low, mid combined low and mid, and spectral energy electron environments. Three important results are presented: (1) it determined electron environments that lead to dielectric discharges at potentials less negative than -5 kV; (2) two types of discharges were identified that dominate the kinds of discharges seen; and (3) it is shown that, for the thin dielectric materials tested, the worst-case discharges observed in the various environments are similar

    Dungeness crab research program

    Get PDF
    In 1974, the California State Legislature, recognizing the problem of low yields from the Dungeness crab resource of central California, directed the Department of Fish and Game to conduct an investigation into the causes of the decline. The Operations Research Branch of the Department has conducted preliminary studies and field operations necessary to formulate the Dungeness Crab Research Program. The objectives, research design, and work plans are presented for a 4-year program from July 1, 1975 through August 31, 1979. (38pp.

    Documenting the decision structure in software development

    Get PDF
    Current software development paradigms focus on the products of the development process. Much of the decision making process which produces these products is outside the scope of these paradigms. The Decision-Based Software Development (DBSD) paradigm views the design process as a series of interrelated decisions which involve the identification and articulation of problems, alternates, solutions and justifications. Decisions made by programmers and analysts are recorded in a project data base. Unresolved problems are also recorded and resources for their resolution are allocated by management according to the overall development strategy. This decision structure is linked to the products affected by the relevant decision and provides a process oriented view of the resulted system. Software maintenance uses this decision view of the system to understand the rationale behind the decisions affecting the part of the system to be modified. D-HyperCase, a prototype Decision-Based Hypermedia System is described and results of applying the DBSD approach during its development are presented

    HASH(0x563d441a89c8)

    Get PDF
    HASH(0x563d4418a568)HASH(0x563d440feea8

    HASH(0x563d4416de50)

    Get PDF
    HASH(0x563d43e3c048)HASH(0x563d440a3770

    Chemical nonlinearities in relating intercontinental ozone pollution to anthropogenic emissions

    Get PDF
    Model studies typically estimate intercontinental influence on surface ozone by perturbing emissions from a source continent and diagnosing the ozone response in the receptor continent. Since the response to perturbations is non-linear due to chemistry, conclusions drawn from different studies may depend on the magnitude of the applied perturbation. We investigate this issue for intercontinental transport between North America, Europe, and Asia with sensitivity simulations in three global chemical transport models. In each region, we decrease anthropogenic emissions of NOx and nonmethane volatile organic compounds (NMVOCs) by 20% and 100%. We find strong nonlinearity in the response to NOx perturbations outside summer, reflecting transitions in the chemical regime for ozone production. In contrast, we find no significant nonlinearity to NOx perturbations in summer or to NMVOC perturbations year-round. The relative benefit of decreasing NOx vs. NMVOC from current levels to abate intercontinental pollution increases with the magnitude of emission reductions

    Clouds, photolysis and regional tropospheric ozone budgets.

    Get PDF
    We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene, through decreases of OH in the lower troposphere, is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity of the ozone budget components on regional scales
    corecore